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FLOW OF A RELAXING GAS AROUND A THIN CONE OF REVOLUTION

Yu. V. Khodyko
(Presented by Academician B. I. Stepanov, Belorusskaya
SSR Academy of Sciences)

ABSTRACT

The problem of supersonic flow around thin bodies of
revolution by a gas, in which chemical reactions and relaxa-
tion of internal degrees of freedom take place, is reduced
to the integration of a single differential equation. It
is assumed that the linearized flow equations hold and that
functions of state exist. Using Laplace transformation
methods, the author discusses flow close to the initial
frozen Mach line, flow close to the surface of the cone,
and the region far removed from the axis and the initial
frozen Mach 1line.

The problem of supersonic flow around thin bodies of revolution by
a gas, in which chemical reactions and relaxation of internal degrees
of freedom take place, can be reduced to the integration of the equation

K (15 Dy — (Ur) (1 P,), ) A 2Py~ = (1) (rd;), = 0, (1)

as can be shown (which is written in a cylindrical coordinate system,
the x - axis of which coincides with the axis of the body of revolu-
tion and which is parallel to the direction of the undisturbed stream
(Figure 1)). 1In this equation, K is the parameter which is proportion-
al to the length of relaxation in the undisturbed stream U Tt _ (the
index <« designates the quantity referring to the undisturbed region);
T is the relaxation time; ¢ is the potential of the velocity of dis-
turbance, determined by the relationship ¢ = u, ® = v; u and v are
the velocity components of the disturbance™along the = and r axes;

A=V ML -1, A = VM2 -1, M, and M_ are the Mach numbers which
f bl e e I e

are equal respectively to Um/af

tion of the propagation of weak disturbances in a relaxing medium two
velocities of sound arise: frozen af and equilibrium a, (Ref. 1).

and U;/aa. In general, in an examina-

Since af is always greater than a,s M} < Mé, and the condition pro-

viding for the supersonic nature of the flow will be ¥, > 1.
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The conditions under which equation (1) will hold can be reduced
primarily to two assumptions. Under the first assumption, it is
assumed that the conditions for the linearization of the equations
describing the flow field are fulfilled, i.e. the streamlined body is
assumed to be thin. Under the second assumption, it is assumed that
the non-equilibrium states which arise allow a thermodynamic descrip-
tion, i.e. a function of state exists - let us call enthalpy Z -
which is a function not only of density p and pressure P, but also a
function of the parameter q which characterizes the deviation from
complete thermodynamic equilibrium. For example, in concrete cases
it is possible to let the oscillation or rotation temperature, degree
of dissociation, etc. be such a parameter.

Figure 1

Figure Showing the Flow of a Relaxing
Gas Around a Thin Cone of Revolution
Under Zero Angle of Attack (1 - Initial
Frozen Mach Line;2 - Initial Equili-
brium Mach Line).

Equations which are analogous to (1) were obtained and analyzed
in the works (Ref. 2 - Ref. 4). The characteristics of nonequilibrium
flow around thin, two-dimensional profiles were studied in detail with
their help. However, in practice, flow around three-dimensional
bodies is also of great interest; the simplest example of this is a
thin cone of revolution.

Before writing out the corresponding boundary conditions for
equation (1) in explicit form, let us transform it - introducing
dimensionless variables - according to the relationships:

D=U,Ko, x=Kx', r=Kr'/\, a=NMN>1;

then, changing to new independent variables, § = x
Thus, instead of (1), we obtain
+ [(UVn)+a—1] @ — Pnn — (1) eq + (1/m) @ =0.

The boundary conditions for this equation are:
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@ ={ ON or E<0 (3)
< for -+ o (N = const)
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70
here € is the tangent of the half angle at the apex of the cone.
Equation (4) arises from the requirement, which is customary in the
theory of thin bodies, that %i% ry = R—%g-, where R(x) is the
generatrix of the streamlined, axisymmetric body.
We can solve equation (2) with the aid of the Laplace transforma-
tion. Designating the Laplacian form of the function by the same

symbol, but with a bar above, we obtain in image space the ordinary
differential equation of the second order for: f (f =7V ne):

Foogi [pefe—1Y _ 1 ] 7
Fn = 291, [p(p+1> @ )

=—(r+ 1)—‘{[2%—%@—1)]&(0,*1)—‘

d? d 2
_[ - —2(p+1)?q—+1/(2"1) —p(a—l)JHO,M}- (5)

Setting the right part of (5) equal to zero, we obtain the equation

7""_2”?"—[”2(;:1)_ Corl L ©

This change is justified if the solution of equation (6), substituted
in the right part of (5), makes it zero. Below, we shall verify the
fact that the solution which is of interest for us actually satisfies
this condition.

— (
Completing the substitution f = PNz and t = p no 102= %%5%2-1’
we change equation (6) to the form p
2 —[1— @)y 2= 0, (7)
the general solution of which will be
=A@V )+ B(P)VIK®. (8

Because of the requirement for the boundedness of the potential for
n + »®, we must set 4 = 0. Then, for ¢ we obtain



¢ =B(p)Vpo e K, (p0), ¢ 9)

where the constant B(p) must be determined with the aid of the
boundary condition (4). As a result, we find that

@ (p,m) = — (%p?) e K, (p 70)- (10)

will be a solution for the problem in image space which satisfies
the boundary conditions.

Since it is rather difficult to invert ¢ directly with the aid
of the inversion theorem, let us study the behavior of the solution
in the limiting cases p - 0, p > = and n + 0, where the right part
of (10) is greatly simplified.

1. Flow Close to the Initial Frozen Mach Line.

According to the transformation, the region £ << 1, which cor-
responds to dimensionless variable distances which are considerably
smaller than the length of relaxation close to the initial frozen
Mach line, envelops the zone near the frozen flow. From the theory
of Laplace transformation, it is known (Ref. 5) that the asymptotic
expansion of the image for p + = corresponds to the expansion of the
original in a power series around § = 0. Therefore, utilizing the
expansion for Ko(p no) for large values of the argument_ and separa-
ting ¢ and o”! in series of p~*, we find that for p = «¢ (p, n)it is
possible to represent the following in the form

S} e [25) )5

and the potential itself for & - 0O

e a—1 - An,__ gt/
fp(s,n)z—ﬁ]/fz;e’“’{—( 2 )n}g r(n+-g—) (2

The general form of the coefficients An is:

AFE]W-, (13)

where ¢, are the constants depending on <.

First of all, it follows from formula (12) that the transforma-
tion from (5) to (6) was justified, since ¢(0, n) = @é(O, n) = 0. 1In




the second place, the potential itself and its derivatives - i.e.,

the velocities of disturbance -~ decrease exponentially with an in-

crease in n. Therefore, close to the apex of the cone along the

frozen Mach line, a disturbance is formed which decreases rapidly with dis-
tance from the axis, just as in plane flow. The main increase in

the disturbance occurs along the equilibrium Mach line, but - in con-

trast to the equilibrium flow — the velocities of the disturbance on

this line will not be equal to zero.

2. Field of Flow Close to the Surface of the Cone.

A picture of the flow close to the axis is of great practical
interest, because the value for the velocity of the disturbance on
the cone surface makes it possible to find the pressure coefficient
Cp and, consequently, to calculate the resistance experienced by the
body. Since the body being examined is thin, we expand the expression

for u (p,n) = - (¢2/p) Ky (p no) and v (p,m) = (e2/p) " Ky (p no)
in series for n + 0, and we 1limit ourselves to the dominant terms
only. We have:

w(p, )= (¥p) [In(pne/2) 4 CJ,

u(p, )= <Ypia, (14)

where (€ is the Euler constant. Transforming these expressions and
changing to dimensional variables, we find:

s P | .
\f T

v=e?y/r.

Here F (£, a) = (1/2) [In a + Ei( - &) - Ei( - ag)]. Thus, the
pressure coefficient on the surface of a thin cone equals

cp = 22 {In(2/eh) - % — F (/K. a)} (16)

Formula (16) differs from the corresponding classical expres-—
sion by the presence of an additional term F(x/K, a). It can be
readily seen that, close to the apex of the cone, for & + 0 F (x/K,
a) » 0, C agrees with the classical value calculated on the basis
of frozen‘velocity of sound. For & - « F > (1/2) 1n a, C_ strives
to the classical value, but for the equilibrium speed of “sound.
This means that the entire effect of the relaxation process, which
takes place in the medium, is concentrated close to the apex of
the cone and at distances which considerably exceed the length of
relaxation, and the flow proves to be stable (see Figure 2).



3. The Flow for Large & and n.

The region § »> = corresponds in image space to the region p + O.
However, we wish to study the region which is not only far from the
initial frozen Mach line, but also far from the axis. Therefore, it
is impossible to regard the product pn as small. Since for
p>00~> /7@ then for ¢ we have in this case

6: —_— (e”/pz)e”"Ko(P"'lVE_)- (17)

This expression can be represented in the form of a product of two
functions of p which are Laplacian forms of known functions. Uti-
lizing the convolution theorem, we find that

E—(Va —1)y

B, M) = —e f =5 —(Va—1)n] L

— 18
Y 1/-1:2 +2Varn (18)

Calculating the integral in (18), we obtain

oG, n)=—62V5n[T(l%n) +—1715—] Arch [(1 + (Vf?n)_

_<1fg> _ ( I W W L (19)
Va Van) Va

and, returning to the dimensional variables, we finally arrive at
the customary expression for the potential of conical flow

(-

P (x, r) = —e*xUqs { Arch(x/\ ) — V1 — (A, r/x)?). (20)

In (20) the Mach number is determined according to the equilibrium
velocity of sound.

This result is not unexpecfed, since the region /K >> 1 and
r/K >> 1 is a region of equilibrium flow.
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Figure 2
Dependence of C_on Distance for a Cone with Half-

Angle at Apex ¢ = 5°, M3 = 1.2 and a = 2:

1 -K=o0; 2 -K=10; 8 ~K=1; 4 -K=0.1; 5 -K=20
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